How do you find the integral of x(ln x)^3 dxx(lnx)3dx?

2 Answers
Jun 30, 2015

This is of course Integration by Parts.

Let:
u = ln^3xu=ln3x
du = (3ln^2x)/xdxdu=3ln2xxdx
dv = xdxdv=xdx
v = x^2/2v=x22

uv - intvduuvvdu

= x^2/2ln^3x - int x^cancel(2)/2 * (3ln^2x)/cancel(x)dx

= (x^2ln^3x)/2 - 3/2int xln^2xdx

Repeat:
u = ln^2x
du = (2lnx)/xdx
dv = xdx
v = x^2/2

= (x^2ln^3x)/2 - 3/2(int xln^2xdx)

= (x^2ln^3x)/2 - 3/2((x^2ln^2x)/2 - int x^cancel(2)/cancel(2) * (cancel(2)lnx)/cancel(x) dx)

= (x^2ln^3x)/2 - 3/2((x^2ln^2x)/2 - int xlnx dx)

and repeat again:
u = lnx
du = 1/xdx
dv = xdx
v = x^2/2

= (x^2ln^3x)/2 - 3/4x^2ln^2x + 3/2(int xlnx dx)

= (x^2ln^3x)/2 - 3/4x^2ln^2x + 3/2((x^2lnx)/2 - int x^cancel(2)/2*1/cancel(x)dx)

= (x^2ln^3x)/2 - 3/4x^2ln^2x + 3/2((x^2lnx)/2 - int x/2dx)

= 1/2x^2ln^3x - 3/4x^2ln^2x + 3/4x^2lnx - 3/4int xdx

= 1/2x^2ln^3x - 3/4x^2ln^2x + 3/4x^2lnx - 3/8x^2

= color(blue)(1/8x^2(4ln^3x - 6ln^2x + 6lnx - 3) + C)

Jun 30, 2015

I found:
x^2/2ln^3(x)-3/4x^2ln^2(x)+3/4x^2ln(x)-3/8x^2+c

Explanation:

I started integrating by Substitution and the by Parts (three times):
enter image source here