How do you find the intercepts, vertex and graph #f(x)=-2x^2+8x-3#?

1 Answer
Feb 21, 2017

Vertex #(2, 5)#
X intercept #(3.58, 0); (0.42, 0)#
Y-Intercept #(0, -3)#

Explanation:

Given -

#f(x) = -2x^2+8x-3#

Vertex

#x=(-b)/(2a)=(-8)/(2 xx -2)=8/(-4)=-2#

At #x=2#

#y=-2(2^2)+8(2)-3#
#y=-8+16-3=16-11=5#

Vertex #(2, 5)#

X intercept

# -2x^2+8x-3=0#

{Completing the square]

#x^2-4x+3/2=0# [divide all the terms by #-2#]

#x^2-4x=-3/2# [Take the constant term to the right]
#x^2-4x+4=-3/2+4# (divide the coefficient of #x# square it and add to both sides]
#x^2-4x+4=-3/2+4=(-3+8)/2=5/2#
#(x-2)^2=-5/2#
#x-2=+-sqrt(5/2)=+-1.58#

#x=1.58+2=3.58#
#x=-1.58+2=0.42#

X intercept #(3.58, 0); (0.42, 0)#

Y-Intercept
At #x=0#

#y=-2(0)^2+8(0)-3#
#y=-3#

Y-Intercept #(0, -3)#

To graph the function take a few values on either side of #x=2#
Find the corresponding #y# values.
Tabulate them. Graph the pairs

enter image source here

enter image source here