How do you find the interval of convergence Sigma 2x^n from n=[0,oo)?

1 Answer
Jan 26, 2018

The radius of convergence is abs(x)<1.

Explanation:

We will use the ratio test for convergence. We have that:

sum_(n=0)^oo2x^n

The ratio test tells us that the sum convergence if:

lim_(n->oo)abs(a_(n+1)/a_n)<1

In our case: a_n=2x^n

So:

lim_(n->oo)abs(a_(n+1)/a^n)=lim_(n->oo)abs((2x^(n+1))/(2x^n))

=lim_(n->oo)abs(x^(n+1-1))=lim_(n->oo)abs(x)=abs(x)

So, by the ratio test, for convergence:

abs(x)<1