How do you find the interval of convergence Sigma x^n/n^2 from n=[1,oo)?

1 Answer
Jul 5, 2018

The interval of convergence is -1<=x<=1

Explanation:

Use the Ratio test to compute the convergence interval

a_n=x^n/n^2

|a_(n+1)/a_n|=|x^(n+1)/(n+1)^2*n^2/x^n|

=(n^2x)/(n+1)^2

Calculate the limit as n->oo

Therefore,

lim_(n->oo)|(n^2x)/(n+1)^2|

=|x|*lim_(n->oo)|(n^2)/(n+1)^2|

=|x|*1

=|x|

The series converges for |x|<1

Now, check the convergence when, |x|=1

When x=1

sum_1^oo1^n/n^2

By the " p-series test", p=2 and p>1, the series converges

When x=-1

sum_1^oo(-1)^n/n^2=sum_1^oo|(-1)^n/n^2|=sum_1^oo1/n^2

By the " p-series test", p=2 and p>1, the series converges

The series converges absolutely