We calculate the first derivative
y=x^3-11x^2+39x-47
dy/dx=3x^2-22x+39
We need dy/dx=0
3x^2-22x+39=(3x-13)(x-3)=0
The critical points are
x=13/3 and x=3
Now, we construct the chart
color(white)(aa)Intervalcolor(white)(aa)|color(white)(aaa)]-oo,3[color(white)(aaa)|color(white)(aaa)]3,13/3[color(white)(aaa)|]13/3,+oo[
color(white)(aa)x-3color(white)(aaaaa)|color(white)(aaa)-color(white)(aaaaaaa)|color(white)(aaaaaa)+color(white)(aaaa)|color(white)(aaaa)+
color(white)(aa)3x-13color(white)(aaa)|color(white)(aaa)-color(white)(aaaaaaa)|color(white)(aaaaaa)-color(white)(aaaa)|color(white)(aaaa)+
color(white)(aa)dy/dxcolor(white)(aaaaaaa)|color(white)(aaa)+color(white)(aaaaaaa)|color(white)(aaaaaa)-color(white)(aaaa)|color(white)(aaaa)+
color(white)(aa)ycolor(white)(aaaaaaaaa)|color(white)(aaa)↗color(white)(aaaaaa)|color(white)(aaaaaa)↘color(white)(aaaa)|color(white)(aaaa)↗
The intervals of increasing are ]-oo,3[ and ]13/3,+oo[
The interval of decreasing is ]3,13/3[