How do you find the intervals of increasing and decreasing using the first derivative given #y=sinx+cosx#?

1 Answer
Jul 25, 2017

The function is increasing on intervals of the form #[-(3pi)/4+2npi,pi/4+2npi]# and decreasing on intervals of the form #[pi/4+2npi,(5pi)/4+2npi]#, where #n=0,\pm 1,\pm 2,...#

Explanation:

The derivative of #y=sin x+cos x# is #dy/dx=cos x-sin x#. Setting this equal to zero yields #cos x=sin x# (which is equivalent to #tan x=1#). This occurs when #x=...,-(7pi)/4,-(3pi)/4,pi/4,(5pi)/4,...#.

You can check that #cos x>sin x# (so #dy/dx>0#) which occurs when #x\in (-(3pi)/4,pi/4)#, when #x\in ((5pi)/4,(9pi)/4)#, etc...).

You can check that #cos x < sin x# (so #dy/dx<0#) which occurs when #x\in ((-7pi)/4,-(3pi)/4)#, when #x\in (pi/4,(5pi)/4)#, etc...).

The answer above follows from these observations.

You can confirm this visually by looking at the graph.

graph{sin(x)+cos(x) [-10, 10, -5, 5]}