How do you find the intervals of increasing, decreasing and concavity for f(x) = 2x^3 + 3x^2 - 432x ?

1 Answer
May 23, 2015

Values of f increase when f'(x)>0 and decrease when f'(x)<0. Also f is concave when f''(x)<0.

So:
f'(x)=2*3x^2+3*2x-432=6x^2+6x-432=
=6(x^2+x-72)=6(x+9)(x-8)
f'(x)<0 <=> x in (-9;8)
f'(x)>0 <=> x in (-oo;-9) or x in (8;+oo)

f''(x)=6*2x+6=12x+6=12(x+1/2)
f''(x)<0 <=> x in (-oo;-1/2)