How do you find the limit of #(1+(7/x)+(3/x^2))^x# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Feb 26, 2017 See below. Explanation: Solving #1+7/x+3/x^2=3(1/x+r_1)(1/x+r_2)# we have #(1+7/x+3/x^2)=3 r_1 r_2(r_1/x+1)(r_2/x+1)# and also #(1+7/x+3/x^2)^x=(3 r_1 r_2)^x(r_1/x+1)^x(r_2/x+1)^x# but #3 r_1 r_2 = 1# so #lim_(x->oo)(1+7/x+3/x^2)^x = lim_(y_1->oo)(1/y_1+1)^(y_1/r1)lim_(y_2->oo)(1/y_2+1)^(y_2/r_2)# giving #lim_(x->oo)(1+7/x+3/x^2)^x=e^(1/r_1) e^(1/r_2)= e^(1/r_1+1/r_2)# with #r_1 = -1/6 (7 + sqrt[37])# and #r_2 = -1/6 (7 - sqrt[37])# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1496 views around the world You can reuse this answer Creative Commons License