How do you find the limit of #1/(sqrt(x^2 + 1) - x)# as x approaches #oo#?
1 Answer
Jul 28, 2016
Explanation:
#lim_(x->oo) 1/(sqrt(x^2+1)-x)#
#=lim_(x->oo) 1/(sqrt(x^2+1)-x)*(sqrt(x^2+1)+x)/(sqrt(x^2+1)+x)#
#=lim_(x->oo) (sqrt(x^2+1)+x)/((x^2+1)-x^2)#
#=lim_(x->oo) (sqrt(x^2+1)+x) = oo#