How do you find the limit of #(3/x)^(1/x)# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Bdub Apr 21, 2016 #y=1# Explanation: #(3/oo)^(1/oo)=0^0#-> this is an indeterminate form so we use l'Hopitals' Rule Let #y=(3/x)^(1/x)# #lny=ln(3/x)^(1/x)# #lny=1/x ln(3/x)# #lny=ln(3/x)/x# #lim_(x->oo) lny = lim_(x->oo) ln(3/x)/x # #lim_(x->oo) lny =lim_(x->oo)((1/(3/x))*-3/x^2)/1# #lim_(x->oo)lny=lim_(x->oo)(x/3 xx-3/x^2)# #lim_(x->oo)lny=lim_(x->oo)-1/x# #lny=-1/oo# #lny=0# #e^0=y# #y=1# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1236 views around the world You can reuse this answer Creative Commons License