How do you find the limit of #(3x-3) /( x^4 - 12x^3 + 36x^2)# as x approaches #3^+#? Calculus Limits Determining Limits Algebraically 1 Answer Eddie Jul 2, 2016 #= 2/ 27# Explanation: #lim_{x to 3^+} (3x-3) /( x^4 - 12x^3 + 36x^2)# #= lim_{x to 3^+} 1/x^2 * lim_{x to 3^+} (3(x-1)) /( x^2 - 12x + 36)# #= 1/9 * lim_{x to 3^+} (3(x-1)) /( x-6)^2# #= 1/9 * (3(3-1)) /( 3-6)^2# #= 2/ 27# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1246 views around the world You can reuse this answer Creative Commons License