How do you find the limit of #((8 + h)^2 - 64) / h # as h approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Tony B Feb 20, 2016 #lim_(h->0) f(h) = 16# Explanation: Given:#" "f(h) = ((8+h)^2-64)/h# Expanding the brackets. # (h^2+16h+64-64)/h# #h^2/h+16h/h# #h+16# #=> lim_(h->0) h + lim_(h->0) 16" " =" " 0+16" "=" "16# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 6526 views around the world You can reuse this answer Creative Commons License