How do you find the limit of #(cot(x)) / (ln(x))# as x approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Sep 21, 2016 #-oo# Explanation: #cot(x)/ln(x)=cos(x)/(sin(x)ln(x)) # but #sin(x)ln(x) = ln(x^sin(x))# and now, making #x = 1 + delta# #x^sin(x) = (1+delta)^sin(1+delta)# and #(1+delta)^sin(1+delta) = 1 + sin(1+delta)delta+(sin(1+delta)(sin(1+delta)-1))/(2!)delta^2+ cdots# then #lim_(x->0) ln(x^sin(x))=ln(lim_(x->0) x^sin(x)) = # #=ln(lim_(delta->-1)(1+delta)^sin(1+delta) ) = ln(1^-)=0^-# so #lim_(x->0)cot(x)/ln(x) = -oo# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 4466 views around the world You can reuse this answer Creative Commons License