How do you find the limit of #sin (x^2)/sin^2(2x)# as x approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Oct 14, 2016 #1/4# Explanation: We will be using #lim_(x->0)sinx/x=1# so #sin (x^2)/sin^2(2x)=((4x^2)/(4x^2))sin (x^2)/sin^2(2x)=1/4((sin(x^2)/x^2))/((sin(2x)/(2x))^2)# then #lim_(x->0)sin (x^2)/sin^2(2x)=lim_(x->0)1/4((sin(x^2)/x^2))/((sin(2x)/(2x))^2)=1/4 1/1 = 1/4# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 15130 views around the world You can reuse this answer Creative Commons License