How do you find the limit of #(sqrt(6) – sqrt (5h^2 + 11h + 6)) / (h)# as h approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Mar 30, 2017 #-11/(2sqrt(6))# Explanation: #((sqrt(6) – sqrt (5h^2 + 11h + 6)) / (h))( (sqrt(6) + sqrt (5h^2 + 11h + 6)) /(sqrt(6) + sqrt (5h^2 + 11h + 6))) =# #(6-(5h^2+11h+6))/(h(sqrt(6) + sqrt (5h^2 + 11h + 6))) = -(5h+11)/(sqrt(6) + sqrt (5h^2 + 11h + 6))# then #lim_(h->0)(sqrt(6) – sqrt (5h^2 + 11h + 6)) / (h)=-11/(2sqrt(6))# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 2814 views around the world You can reuse this answer Creative Commons License