How do you find the limit of #((x^2 + 2x - 3)^0.5) - x# as x approaches #oo#?

1 Answer
Apr 12, 2018

#1#

Explanation:

#lim_(x to oo) sqrt(x^2 + 2x - 3) - x#

Complete the square

#= lim_(x to oo) sqrt((x+1)^2- 4) - x#

let #z = x + 1#

#= lim_(z to oo) sqrt(z^2- 4) - z + 1#

#= lim_(z to oo) z sqrt(1- 4/z^2) - z + 1#

Binomial expansion for the root

#= lim_(z to oo) z (1- 2/z^2 + mathbb O (1/z^4) ) - z + 1#

#= lim_(z to oo) z- 2/z + mathbb O (1/z^3) - z + 1 = 1#