How do you find the limit of (x^2+3)/(x^2+4)x2+3x2+4 as x->-oox?

2 Answers
Nov 2, 2016

lim_(x->-oo)(x^2+3)/(x^2+4) = 1

Explanation:

If we look at the graph of y=(x^2+3)/(x^2+4) we can see that it is clear that the limit exists, and is approximately 1

graph{(x^2+3)/(x^2+4) [-10, 10, -2, 2]}

Now, As x->-oo then x^2->oo ,but 1/x^2->0

So, it would be better if we could replace x^2 with 1/x^2, or x^-2

lim_(x->-oo)(x^2+3)/(x^2+4) = lim_(x->-oo)((x^2+3))/((x^2+4)) * x^-2/x^-2

:. lim_(x->-oo)(x^2+3)/(x^2+4) = lim_(x->-oo)(x^-2(x^2+3))/(x^-2(x^2+4))

:. lim_(x->-oo)(x^2+3)/(x^2+4) = lim_(x->-oo) (x^-2x^2+3x^-2) / (x^-2x^2+4x^-2)

:. lim_(x->-oo)(x^2+3)/(x^2+4) = lim_(x->-oo) (1+3x^-2) / (1+4x^-2)

And, using x^-2->0 as x->-oo we have;

lim_(x->-oo)(x^2+3)/(x^2+4) = (1+0) / (1+0) = 1

Which is completely consistent with the above graph.

Nov 2, 2016

lim_(x->-oo)(x^2+3)/(x^2+4) = 1

Explanation:

We can also use L'Hospital's Rule as the limit is of an indeterminate form oo/oo

So By L'Hospital's Rule;

lim_(x->-oo)(x^2+3)/(x^2+4) = lim_(x->-oo)((x^2+3)')/((x^2+4)')
:. lim_(x->-oo)(x^2+3)/(x^2+4) = lim_(x->-oo)(2x)/(2x)
:. lim_(x->-oo)(x^2+3)/(x^2+4) = lim_(x->-oo)(1)
:. lim_(x->-oo)(x^2+3)/(x^2+4) = 1