How do you find the limit of (x-5)/(x^2-25)x5x225 as x->5^-x5?

2 Answers
Nov 9, 2016

lim_(x->5^-) (x-5)/(x^2-25) = 1/10

Explanation:

lim_(x->5^-) (x-5)/(x^2-25) = lim_(x->5^-) color(red)(cancel(color(black)((x-5))))/(color(red)(cancel(color(black)((x-5))))(x+5))

color(white)(lim_(x->5^-) (x-5)/(x^2-25)) = lim_(x->5^-) 1/(x+5)

color(white)(lim_(x->5^-) (x-5)/(x^2-25)) = 1/(5+5)

color(white)(lim_(x->5^-) (x-5)/(x^2-25)) = 1/10

Nov 9, 2016

1/10

Explanation:

Substituting 5 in the given expression results to an indeterminate solution:

lim_(x->5^-)(x-5)/(x^2-25)

=(5-5)/(5^2-25)

=0/0" " Indeterminate solution.

let us think about another way to find the limit.

Here, Factorizing x^2 - 25 is the best way.

Factorization x^2 -25" "is computed by applying the

polynomial identity.

color(blue)((a^2-b^2)=(a-b)(a+b))

color(blue)(x^2 - 25=x^2 - 5^2=(x-5)(x+5))

lim_(x->5^-)(x-5)/(x^2-25)

=lim_(x->5^-)cancel(x-5)/color(blue)(cancel(x-5)(x+5))

=lim_(x->5^-)1/(x + 5)

=1/(5 + 5)

=1/10