How do you find the limit of ( x+sin 2x)/( 3x) x+sin2x3x as x approaches 0?

1 Answer
Jul 1, 2016

Lt_(x->0)(x+sin2x)/(3x)=1Ltx0x+sin2x3x=1

Explanation:

Lt_(x->0)(x+sin2x)/(3x)Ltx0x+sin2x3x

= Lt_(x->0)(x/(3x)+(sin2x)/(3x))Ltx0(x3x+sin2x3x)

= Lt_(x->0)(1/3+(sin2x)/(2x)xx(2x)/(3x))Ltx0(13+sin2x2x×2x3x)

= Lt_(x->0)(1/3)+Lt_(x->0)(sin2x)/(2x)xxLt_(x->0)(2x)/(3x)Ltx0(13)+Ltx0sin2x2x×Ltx02x3x

= 1/3+Lt_(2x->0)(sin2x)/(2x)xx2/313+Lt2x0sin2x2x×23

= 1/3+1xx2/313+1×23

= 1/3+2/3=113+23=1