How do you find the local maximum and minimum values of f(x)=2x^3 + 5x^2 - 4x - 3?

1 Answer
Jun 10, 2017

f(-2)=9 is local Maxima, f(1/3)=-100/27 is local

Minima.

Explanation:

We know that, for local Extreme values, f'(x)=0.

Also, f''(x)<0 for Maxima, and, f''(x) >0 for Minima.

f(x)=2x^3+5x^2-4x-3

rArr f'(x)=6x^2+10x-4, &, f''(x)=12x+10.

f'(x)=0 rArr 2(3x^2+5x-2)=0.

rArr 2(x+2)(3x-1)=0.

rArr x=-2, x=1/3.

Now, f''(-2)=-24+10=-14 < 0.

:. f has a local maxima at x=-2, &, it is,

f(-2)=-16+20+8-3=9.

Also, f''(1/3)=4+10=14 > 0.

:. f has a local minima at x=1/3, which is,

f(1/3)=2/27+5/9-4/3-3=-100/27.

Thus, f(-2)=9 is local Maxima, f(1/3)=-100/27 is local

Minima.

Enjoy Maths.!