How do you find the local maximum and minimum values of f(x) = 7x + 9x^(-1)?

1 Answer
Jun 27, 2017

"local min at " ((3sqrt7)/7,6sqrt7)

"local max at " (-(3sqrt7)/7,-6sqrt7)

Explanation:

"to find the x-coordinates of the stationary points, differentiate"
f(x)" and equate to zero"

f'(x)=7-9x^-2=0

rArr9/x^2=7

rArrx^2=9/7rArrx=+-3/sqrt7=+-(3sqrt7)/7

f((3sqrt7)/7)=7((3sqrt7)/7)+9/((3sqrt7)/7)=6sqrt7

f(-(3sqrt7)/7)=-6sqrt7

rArr"stationary points at " ((3sqrt7)/7,6sqrt7)" and"

(-(3sqrt7)/7,-6sqrt7)

"to find the nature of the stationary points"

"use the "color(red)"second derivative test"

f'(x)=7-9x^-2

rArrf''(x)=18x^-3=18/x^3

f''((3sqrt7)/7)>0rArrcolor(red)" local minimum"

f''(-(3sqrt7)/7)<0rArrcolor(red)" local maximum"

rArr((3sqrt7)/7,6sqrt7)" is a local minimum"

"and " (-(3sqrt7)/7,-6sqrt7)" is a local maximum" graph{7x+9x^-1 [-38.9, 38.88, -19.45, 19.45]}