How do you find the local maximum and minimum values of f(x) = 7x + 9x^(-1)?
1 Answer
Jun 27, 2017
Explanation:
"to find the x-coordinates of the stationary points, differentiate"
f(x)" and equate to zero"
f'(x)=7-9x^-2=0
rArr9/x^2=7
f((3sqrt7)/7)=7((3sqrt7)/7)+9/((3sqrt7)/7)=6sqrt7
f(-(3sqrt7)/7)=-6sqrt7
rArr"stationary points at " ((3sqrt7)/7,6sqrt7)" and"
(-(3sqrt7)/7,-6sqrt7)
"to find the nature of the stationary points"
"use the "color(red)"second derivative test"
f'(x)=7-9x^-2
rArrf''(x)=18x^-3=18/x^3
f''((3sqrt7)/7)>0rArrcolor(red)" local minimum"
f''(-(3sqrt7)/7)<0rArrcolor(red)" local maximum"
rArr((3sqrt7)/7,6sqrt7)" is a local minimum"
"and " (-(3sqrt7)/7,-6sqrt7)" is a local maximum" graph{7x+9x^-1 [-38.9, 38.88, -19.45, 19.45]}