Let's calculate the first and second derivatives
#f(x)=x^3+6x^2+12x-1#
#f'(x)=3x^2+12x+12#
#=3(x^2+4x+4)#
#=3(x+2)(x+2)#
#=3(x+2)^2#
and
#f''(x)=6x+12#
The critical point is when #f'(x)=0#
That is,
#x+2=0#
#x=-2#
Let's build a chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##f'(x)##color(white)(aaaaaa)##+##color(white)(aaaaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##↗##color(white)(aaaaaa)##↗#
Let's look at #f''(x)#
#f''(x)=0# when #x+2=0#
That is when #x=-2#
There is a point of inflection at #(-2,-9)#
Let's do a chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-2##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##f''(x)##color(white)(aaaaaa)##-##color(white)(aaaaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##nn##color(white)(aaaaaa)##uu# graph{x^3+6x^2+12x-1 [-38.27, 26.68, -22.07, 10.37]}