How do you find the locus of the center of the hyperbola having asymptotes given by y-x tan alpha+1=0 and y-x tan(alpha+pi/4)+2=0yxtanα+1=0andyxtan(α+π4)+2=0, where alphaα varies?

2 Answers
Dec 15, 2016

The equations of the locus are:

x=cosalpha(cosalpha-sinalpha)x=cosα(cosαsinα)

y=-1+sinalpha(cosalpha-sinalpha)y=1+sinα(cosαsinα)

Explanation:

By definition the center of the hyperbola is the point where the asymptotes cross, so that they solve the system:

y-xtanalpha+1 = 0yxtanα+1=0
y-xtan(alpha+pi/4)+2=0yxtan(α+π4)+2=0

y-xtanalpha = -1yxtanα=1
y-xtan(alpha+pi/4)=-2yxtan(α+π4)=2

Subtracting member by member:

x(tan(alpha+pi/4)-tanalpha)= 1x(tan(α+π4)tanα)=1

So:

x=1/(tan(alpha+pi/4)-tanalpha)x=1tan(α+π4)tanα

Now note that:

1/(tan(alpha+pi/4)-tanalpha)= 1/(sin(alpha+pi/4)/cos(alpha+pi/4)-sinalpha/cosalpha)= (cos(alpha+pi/4)cosalpha)/(sin(alpha+pi/4)cosalpha-sinalphacos(alpha+pi/4))=cosalpha(cosalphacos(pi/4)-sinalphasin(pi/4))/sin(alpha+pi/4-alpha)=cosalpha(cosalpha-sinalpha)1tan(α+π4)tanα=1sin(α+π4)cos(α+π4)sinαcosα=cos(α+π4)cosαsin(α+π4)cosαsinαcos(α+π4)=cosαcosαcos(π4)sinαsin(π4)sin(α+π4α)=cosα(cosαsinα)

so:

x=cosalpha(cosalpha-sinalpha)x=cosα(cosαsinα)

y=-1+tanalphacosalpha(cosalpha-sinalpha)=-1+sinalpha(cosalpha-sinalpha)y=1+tanαcosα(cosαsinα)=1+sinα(cosαsinα)

Are the equations of the locus.

Dec 15, 2016

This locus is the circle, with center at (1/2, -3/2)(12,32) and
radius 1/sqrt212.

Explanation:

The asymptotes meet at the center of the hyperbola.

Let t = tan alphat=tanα. Use tan(A+B)=(tan A + tan B)/(1-tan A tan B)tan(A+B)=tanA+tanB1tanAtanB and tan(pi/4) = 1tan(π4)=1.

The coordinates (x, y) of the center are given by

y= xt-1=x(t+1)/(1-t.)-2y=xt1=xt+11t.2. Eliminating t,

y=x((1+(y+1)/x)/((1-(y+1)/x)))-2y=x1+y+1x(1y+1x)2

=x((x+y+1)/(x-y-1))-2=x(x+y+1xy1)2. Cross multiplying,

xy-y^2-y=x^2+xy+x-2(x-y-1)xyy2y=x2+xy+x2(xy1). Simplifying,

x^2+y^2-x+3y+2=0x2+y2x+3y+2=0. In the standard form,

(x-1/2)^2+(y+3/2)^2=(1/sqrt2)^2(x12)2+(y+32)2=(12)2

This locus represents the circle with center at (1/2, -3/2)(12,32) and

radius 1/sqrt212.