We can factorise #f(x)=(3x-1)(x-2)#
We calculate the derivative of #f(x)# and any critical point is found when #f'(x)=0#
#f(x)=3x^2-7x+2#
#f'(x)=6x-7#
#f'(x)=0#, when #6x-7=0#. #=>#, #x=7/6#
We make a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaa)##1/3##color(white)(aaaaa)##7/6##color(white)(aaaaaa)##2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##f'(x)##color(white)(aaaa)##-##color(white)(aaa)##-##color(white)(aaa)##0##color(white)(aaa)##+##color(white)(aa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)####color(white)(aaa)##↘##color(white)(aa)##-25/12##color(white)(aaaaaa)##↗##color(white)(aa)###
There is a minimum at #(7/6,-25/12)#
We can also calculate #f''(x)=6#
#f''(x)>0#, we have a minimum