How do you find the missing side of a right triangle given a = 5, b = 10?

2 Answers
Apr 10, 2016

Use of Pythagora'sTheorem

Explanation:

hyp^2hyp2 =opp^2opp2 + adj^2adj2
Replace values....

10^2102 = 5^252 + side^2side2
100= 25 + side^2side2
100-25= side^2side2
75= side^2side2
side= sqrt7575

Apr 10, 2016

5sqrt555

Explanation:

Note: I am considering aandbaandb are the right containing sides

Consider the diagram

enter image source here

Use Pythagoras theorem

color(blue)(a^2+b^2=c^2a2+b2=c2

Where,

aand baandb are the right-containing sides, and cc is the Hypotenuse

(Hypotenuse is the longest side of a right triangle)

rarr5^2+10^2=c^252+102=c2

rarr25+100=c^225+100=c2

rarr125=c^2125=c2

Take the square root of both sides

rarrsqrt125=sqrtc^2125=c2

color(green)(rArrc=sqrt125=sqrt(5*5*5)=5sqrt5c=125=555=55