How do you find the nth term of the sequence #0.6, 0.61, 0.616, 0.6161,...#?
1 Answer
Mar 29, 2017
Explanation:
Note that:
#0.bar(61) = 61/99#
#0.bar(16) = 16/99#
So we find:
#0.6 = 0.bar(61)-1/10*0.bar(16) = (61-10^(-1) * 16)/99#
#0.61 = 0.bar(61)-1/100*0.bar(61) = (61-10^(-2)*61)/99#
#0.616 = 0.bar(61)-1/1000*0.bar(16) = (61-10^(-3)*16)/99#
#0.6161 = 0.bar(61)-1/10000*0.bar(61) = (61-10^(-4)*61)/99# . . .
We can match this alternating pattern using
#a_n = (122-10^(-n)(77+(-1)^n*45))/198#