How do you find the number of complex zeros for the function #f(x)=27x^9+8x^6-27x^3-8#?
1 Answer
Explanation:
By the Fundamental Theorem of Algebra
We can find the zeros by factoring by grouping and using some identities:
Difference of squares:
#a^2-b^2 = (a-b)(a+b)#
Difference of cubes:
#a^3-b^3 = (a-b)(a^2+ab+b^2)#
Sum of cubes:
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
Note that in these latter two identities, the resulting quadratic factors have no linear factor with Real coefficients.
So we find:
#27x^9+8x^6-27x^3-8#
#= (27x^9+8x^6)-(27x^3-8)#
#= x^6(27x^3+8)-1(27x^3-8)#
#= (x^6-1)(27x^3+8)#
#= ((x^3)^2-1^2)((3x)^3+2^3)#
#= (x^3-1)(x^3+1)(3x+2)(9x^2-6x+4)#
#= (x-1)(x^2+x+1)(x+1)(x^2-x+1)(3x+2)(9x^2-6x+4)#
So there are three Real zeros:
#{ (x=1),(x=-1),(x=-2/3) :}#
And six non-Real Complex zeros:
#{ (x = -1/2+-sqrt(3)/2i), (x = 1/2+-sqrt(3)/2i), (x = 1/3+-sqrt(3)/3i) :}#