How do you find the number of terms given s_n=3829sn=3829 and 7+(-21)+63+(-189)+...?

1 Answer
Aug 21, 2016

n = 6

Explanation:

7+(-21)+63+(-189)+cdots = 7sum_{k=0}^{k=n}(-3)^k = S_n

We know that

sum_{k=0}^{k=n}z^k = (z^{n+1}-1)/(z-1)

so

S_n = 7((-3)^{n+1}-1)/(-3-1) = 3829

then

(-3)^{n+1}=(-4)3829/7+1

and

(-3)^n = (4 cdot 3829/7-1)/3 = 729 = 3^6

so

n = 6