How do you find the polar coordinates given the rectangular coordinates (0,1)?

1 Answer

(r, \theta)\equiv(1, \pi/2)(r,θ)(1,π2)

Explanation:

Given Cartesian coordinates (x, y)\equiv(0, 1)(x,y)(0,1) are converted into polar form (r, \theta)(r,θ) as follows

r=\sqrt{x^2+y^2}r=x2+y2

=\sqrt{0^2+1^2}=02+12

=1=1

&
\theta=\tan^{-1}(y/x)θ=tan1(yx)

=\tan^{-1}(\infty)=tan1()

=\pi/2=π2

hence, the polar form of given point is

(r, \theta)\equiv(1, \pi/2)(r,θ)(1,π2)