How do you find the power series for f(x)=arctanx/xf(x)=arctanxx and determine its radius of convergence?

1 Answer
Dec 9, 2017

arctanx/x = sum_(n=0)^oo (-1)^n x^(2n)/(2n+1) arctanxx=n=0(1)nx2n2n+1

converging for absx < 1|x|<1.

Explanation:

Start the sum of the geometric series:

sum_(n=0)^oo q^n = 1/(1-q)n=0qn=11q for absq < 1|q|<1

posing: q = -x^2q=x2, we have:

sum_(n=0)^oo (-x^2)^n = sum_(n=0)^oo (-1)^n x^(2n) = 1/(1+x^2)n=0(x2)n=n=0(1)nx2n=11+x2 for absx < 1|x|<1

In the interval of convergence we can integrate term by term:

int dx/(1+x^2) = sum_(n=0)^oo int (-1)^n x^(2n) = sum_(n=0)^oo (-1)^n x^(2n+1)/(2n+1) + Cdx1+x2=n=0(1)nx2n=n=0(1)nx2n+12n+1+C

As:

int dx/(1+x^2) = arctanx +Cdx1+x2=arctanx+C

we have:

arctanx = sum_(n=0)^oo (-1)^n x^(2n+1)/(2n+1) + Carctanx=n=0(1)nx2n+12n+1+C

as arctan0 = 0arctan0=0 we can see that C=0C=0, and dividing by xx term by term:

arctanx/x = sum_(n=0)^oo (-1)^n x^(2n)/(2n+1)arctanxx=n=0(1)nx2n2n+1

converging for absx < 1|x|<1.