How do you find the power series for f(x)=xln(1+2x) and determine its radius of convergence?
1 Answer
The power series is
Explanation:
Start with a basic power series:
1/(1-x)=sum_(n=0)^oox^n
Replace
1/(1-(-2x))=sum_(n=0)^oo(-2x)^n
1/(1+2x)=sum_(n=0)^oo(-1)^n2^nx^n
Integrate both sides. In the series, we integrate just the part with
intdx/(1+2x)=sum_(n=0)^oo(-1)^n2^nintx^ndx
1/2ln(1+2x)=C+sum_(n=0)^oo(-1)^n2^nx^(n+1)/(n+1)
Don't forget the
Add a constant of integration. Fortunately, letting
The next step to reaching the "goal function" of
xln(1+2x)=2xsum_(n=0)^oo((-1)^n2^n)/(n+1)x^(n+1)
Bring
xln(1+2x)=sum_(n=0)^oo((-1)^n2^(n+1))/(n+1)x^(n+2)
xln(1+2x)=2x^2-2x^3+8/3x^4-4x^5+...
For the radius of convergence of the series
abs(a_(n+1)/a_n)=abs((((-1)^(n+1)2^(n+2))/(n+2)x^(n+3))/(((-1)^n2^(n+1))/(n+1)x^(n+2)))=abs((-1)^(n+1)/(-1)^n2^(n+2)/2^(n+1)x^(n+3)/x^(n+2)(n+1)/(n+2))
abs(a_(n+1)/a_n)=abs(-2x(n+1)/(n+2))
Find its limit as
lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs(-2x(n+1)/(n+2))
The limit only concerns how
lim_(nrarroo)abs(a_(n+1)/a_n)=2absxlim_(nrarroo)abs((n+1)/(n+2))
The limit is
lim_(nrarroo)abs(a_(n+1)/a_n)=2absx
The ratio test states that
2absx<1
Or:
absx<1/2
Thus, the radius of convergence is