How do you find the power series representation for the function f(x)=1(1+x)2 ?

2 Answers
Sep 7, 2014

By Binomial Series,
1(1+x)2=(1+x)2=n=0(1)n(n+1)xn

Let us review the binomial series.
(1+x)α=n=0C(α,n)xn,
where C(α,n) is a binomial coefficient defined by
C(α,n)=α(α1)(α2)(αn+1)n!

Let us first the binomial coefficients for f(x)=(1+x)2.
Since α=2, its binomial coefficient looks like
C(2,n)=2(21)(22)[2(n1)]n!
=2(3)(4)[(n+1)]n!
by factoring out all 's in the numerator,
=(1)n[234(n+1)]n!=(1)n(n+1)!n!
by dividing the numerator and the denominator by n!,
=(1)n(n+1)

Hence, we have the binomial series
1(1+x)2=n=0(1)n(n+1)xn.

Mar 11, 2017

1(1+x)2=n=0(1)n+1nxn1 for |x|<1

Explanation:

We have the standard power series:

11x=n=0xn

From this we write the power series for 11+x:

11+x=11(x)=n=0(x)n=n=0(1)nxn

Note that 1x+1=(x+1)1, so ddx(11+x)=(x+1)2:

ddx(11+x)=1(x+1)2=ddxn=0(1)nxn

Which can be rewritten as:

1(1+x)2=n=0(1)nddxxn=n=0(1)n(nxn1)

Reversing the signs by multiplying both sides by 1:

1(1+x)2=n=0(1)n(nxn1)=n=0(1)n+1nxn1

Which is convergent for |x|<1.