How do you find the rectangular equation for r=1/(4-costheta)r=14cosθ?

1 Answer
Sep 28, 2016

x^2+y^2=((x+1)/4)^2x2+y2=(x+14)2 which is the equation of an ellipse.

Explanation:

{(x=rcos theta),(y=rsin theta):} so

sqrt(x^2+y^2)=1/(4-x/sqrt(x^2+y^2)) or

sqrt(x^2+y^2)=sqrt(x^2+y^2)/(4 sqrt(x^2+y^2)-x) or

4 sqrt(x^2+y^2)-x = 1 or

sqrt(x^2+y^2) = (x+1)/4 Finally

x^2+y^2=((x+1)/4)^2 which is the equation of an ellipse.