The function is
#f(x)=3x^5-5x^3#
Calculate the first derivative
#f'(x)=15x^4-15x^2=15x^2(x^2-1)#
The critical points are when #f'(x)=0#
That is,
#15x^2(x^2-1)=0#
The solutions to this equation are
#{(x=0),(x=-1),(x=1):}#
Let's build a variation chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##0##color(white)(aaaaa)##1##color(white)(aaaa)##+oo#
#color(white)(aaaa)##f'(x)##color(white)(aaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)##↗##color(white)(aaaa)##↘##color(white)(aaaa)##↘##color(white)(aaaa)##↗#
When #x=-1#, there is a relative maximum at #(-1, 2)#
When #x=1#, there is a relative minimum at #(1, -2)#
When #x=0#, there is an inflection point at #(0, 0)#
graph{3x^5-5x^3 [-10, 10, -5, 5]}