How do you find the relative extrema of #f(x)=3x^5-5x^3#?

1 Answer
Jul 10, 2018

Please see the explanation below

Explanation:

The function is

#f(x)=3x^5-5x^3#

Calculate the first derivative

#f'(x)=15x^4-15x^2=15x^2(x^2-1)#

The critical points are when #f'(x)=0#

That is,

#15x^2(x^2-1)=0#

The solutions to this equation are

#{(x=0),(x=-1),(x=1):}#

Let's build a variation chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##0##color(white)(aaaaa)##1##color(white)(aaaa)##+oo#

#color(white)(aaaa)##f'(x)##color(white)(aaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaa)##↗##color(white)(aaaa)##↘##color(white)(aaaa)##↘##color(white)(aaaa)##↗#

When #x=-1#, there is a relative maximum at #(-1, 2)#

When #x=1#, there is a relative minimum at #(1, -2)#

When #x=0#, there is an inflection point at #(0, 0)#

graph{3x^5-5x^3 [-10, 10, -5, 5]}