How do you find the second derivative of y^2=x^3y2=x3?

1 Answer
Jul 29, 2015

y''= (3)/(4sqrtx)

Explanation:

You can use implicit differentiation:

D(y^2)=D(x^3)

2yy'=3x^2

y'=(3x^(2))/(2y)

Use the quotient rule:

y''=[2y.6x-3x^(2).2y']/(4y^(2))

Subs for y'rArr

y''=[12xy-6x^(2)(3x^(2)/(2y))]/(4y^2)

y''=[12xy-9x^(4)/y]/(4y^2)

y''=(12xy^(2))/(4y^(3))-(9x^4)/(4y^(3))

y^(2)=x^(3)rArr

y''=(12x^(4))/(4y^(3))-(9x^(4))/(4y^(3))

y''=(3x^(4))/(4y^(3))

Since y^(2)=x^(3) this becomes:

y''=(3x^(4))/(4yx^(3))

y''=(3x)/(4y)

y^2=x^3

y=x^(3/2)

Substituting for y gives:

y''=(3x)/(4x^(3/2))

y''=(3)/(4sqrtx)

You can also use explicit differentiation:

y^(2)=x^(3)

y=sqrt(x^(3))

y=x^(3/2)

Apply the power rule:

y'=3/2.x^(1/2)

And again for the 2nd derivative:

y''=3/4x^(-1/2)

y''=3/4.(1)/(x^(1/2)

y''=(3)/(4sqrtx)

Either way gets you there.