How do you find the second derivative of y=Asin(Bx)y=Asin(Bx)?

1 Answer
Jan 13, 2017

(d^2y)/dx^2 = -AB^2sin(Bx)d2ydx2=AB2sin(Bx)

Explanation:

We use

d/dx sin(Kx) = Kcos(Kx)ddxsin(Kx)=Kcos(Kx) and d/dx cos(Kx) = -Ksin(Kx)ddxcos(Kx)=Ksin(Kx)

Differentiating:

y = Asin(Bx)y=Asin(Bx)

once gives us:

dy/dx = A(Bcos(Bx))dydx=A(Bcos(Bx))
\ \ \ \ \ = ABcos(Bx)

Differentiating again we get:

(d^2y)/dx^2 = AB(-Bsin(Bx))
\ \ \ \ \ \ \ = -AB^2sin(Bx)