How do you find the second derivative of y=Asin(Bx)y=Asin(Bx)?
1 Answer
(d^2y)/dx^2 = -AB^2sin(Bx)d2ydx2=−AB2sin(Bx)
Explanation:
We use
d/dx sin(Kx) = Kcos(Kx)ddxsin(Kx)=Kcos(Kx) andd/dx cos(Kx) = -Ksin(Kx)ddxcos(Kx)=−Ksin(Kx)
Differentiating:
y = Asin(Bx)y=Asin(Bx)
once gives us:
dy/dx = A(Bcos(Bx))dydx=A(Bcos(Bx))
\ \ \ \ \ = ABcos(Bx)
Differentiating again we get:
(d^2y)/dx^2 = AB(-Bsin(Bx))
\ \ \ \ \ \ \ = -AB^2sin(Bx)