How do you find the slant asymptote of f(x) =( x^2 + 3x - 3) / (x+4)?

2 Answers
Jan 15, 2017

The slant asymptote is y=x-1

Explanation:

Let's do the long division

color(white)(aaaa)x^2+3x-3color(white)(aaaa)color(red)(x+4)

color(white)(aaaa)x^2+4xcolor(white)(aaaaaaaa)color(blue)(x-1)

color(white)(aaaaa)0-x-3

color(white)(aaaaaaa)-x-4

color(white)(aaaaaaaaa)0+1

Therefore,

(x^2+3x-3)/(x+4)=x-1+1/(x+4)

Let f(x)=(x^2+3x-3)/(x+4)

So,

f(x)=x-1+1/(x+4)

lim_(x->-oo)f(x)-(x-1)=lim_(x->-oo)1/x=0^-

lim_(x->+oo)f(x)-(x-1)=lim_(x->+oo)1/x=0^+

The slant asymptote is y=x-1

graph{(y-(x^2+3x-3)/(x+4))(y-x+1)=0 [-10, 10, -5, 5]}

Jan 15, 2017

Slant asymptote: y = x-1. See the asymptotes-inclusive graph.

Explanation:

By division,

y = f(x)= x-1+1/(x+4)

Rearranged,

(y-x+1)(x+4)=1, revealing that the graph is a hyperbola with

asymptotes

(y-x+1)(x+4)=0.

Separately,

y-x+1=0 gives a slant asymptote and

x+4=0 gives a vertical asymptote.

graph{((y-x+1)(x+4)-1)(y-x+1)(x+0.000001y+4)=0 [-23, 23.02, -12.7, 12.6]}