How do you find the slant asymptote of y=((4x^3)+(x^2)+x+4)/((x^2)+5x)?

1 Answer
Feb 20, 2016

Slant asymptote is y=(4x-19)

Explanation:

While vertical asymptotes are given by solution of (x^2+5x)=0 i.e. x(x+5)=0 i.e. they are x=0 and x=-5

To find slant asymptote of y=(4x^3+x^2+x+4)/(x^2+5x), divide (4x^3+x^2+x+4) by (x^2+5x), o

4x(x^2+5x)-19(x^2+5x)+96x+4 i.e.

y=(4x-19)+(96x+4)/(x^2+5x)

Hence slant asymptote is y=(4x-19)