How do you find the slant asymptote of y=sqrt(x^2+4x) y=√x2+4x?
1 Answer
Notice that
y = x+2y=x+2
and
y = -x-2y=−x−2
Explanation:
Let
As a Real valued function, this has domain
sqrt(x^2+4x)√x2+4x
=sqrt(x^2+4x+4-4)=√x2+4x+4−4
=sqrt((x+2)^2-4)=√(x+2)2−4
=sqrt((x+2)^2(1 - 4/((x+2)^2))= ⎷(x+2)2(1−4(x+2)2)
=abs(x+2) sqrt(1-4/(x+2)^2)=|x+2|√1−4(x+2)2
As
This results in two slant asymptotes:
y = x+2y=x+2 asx->+oox→+∞
and
y = -x-2y=−x−2 asx->-oox→−∞
graph{(y-sqrt(x^2+4x))(y - x - 2)(y + x + 2) = 0 [-11.01, 8.99, -1.08, 8.92]}