How do you find the slant asymptote of y=sqrt(x^2+4x) y=x2+4x?

1 Answer
Feb 24, 2016

Notice that x^2+4x = (x+2)^2 - 4x2+4x=(x+2)24 and take abs(x+2)|x+2| outside the square root to find two slant asymptotes:

y = x+2y=x+2

and

y = -x-2y=x2

Explanation:

Let f(x) = y = sqrt(x^2+4x) = sqrt(x(x+4))f(x)=y=x2+4x=x(x+4)

As a Real valued function, this has domain (-oo, -4] uu [0, oo)(,4][0,), since x^2+4x >= 0x2+4x0 if and only if x in (-oo, -4] uu [0, oo).x(,4][0,).

sqrt(x^2+4x)x2+4x

=sqrt(x^2+4x+4-4)=x2+4x+44

=sqrt((x+2)^2-4)=(x+2)24

=sqrt((x+2)^2(1 - 4/((x+2)^2))= (x+2)2(14(x+2)2)

=abs(x+2) sqrt(1-4/(x+2)^2)=|x+2|14(x+2)2

As x->+-oox± we find that 4/(x+2)^2 -> 04(x+2)20, so f(x)f(x) is asymptotic to abs(x+2)|x+2|

This results in two slant asymptotes:

y = x+2y=x+2 as x->+oox+

and

y = -x-2y=x2 as x->-oox

graph{(y-sqrt(x^2+4x))(y - x - 2)(y + x + 2) = 0 [-11.01, 8.99, -1.08, 8.92]}