How do you find the slant asymptote of y = (x^2 -3x +2) / (x - 4)y=x23x+2x4?

1 Answer
Jan 15, 2016

y=x+1y=x+1

Explanation:

(x^2-3x+2)div (x-4) = color(green)((x+1)) (x23x+2)÷(x4)=(x+1) plus an irrelevant constant remainder
graph{(y-(x^2-3x+2)/(x-4))(y-(x+1))=0 [-22.8, 28.53, -10.58, 15.06]}

If y=f(x)/g(x)y=f(x)g(x) where f(x)f(x) and g(x)g(x) are both polynomial functions
color(white)("XXX")XXXand "degree"(f(x)) > "degree"(g(x))degree(f(x))>degree(g(x))
then (disregarding any remainder)
color(white)("XXX")XXXthe oblique (or "slant") asymptote is given by the equation
color(white)("XXXXXX")y=f(x)/(g(x)XXXXXXy=f(x)g(x)