How do you find the solutions to sin^-1x=sin^-1(1/x)sin1x=sin1(1x)?

2 Answers
Aug 22, 2016

The Soln. is x=+-1x=±1.

Explanation:

sin^-1x=sin^-1(1/x)sin1x=sin1(1x)

rArr sin(sin^-1x)=sin(sin^-1(1/x)sin(sin1x)=sin(sin1(1x)

rArr x=1/xx=1x

rArr x^2=1x2=1

rArr x=+-1x=±1

These roots satisfy the given eqn.

Hence, the Soln. is x=+-1x=±1.

Aug 22, 2016

pi/2, (3pi)/2π2,3π2

Explanation:

arcsin x = arcsin (1/x)
The 2 solutions are:
sin x = 1, and sin (1/x) = 1sin(1x)=1
sin x = - 1 , and sin (1/x) = - 1sin(1x)=1
Any other values of x will make the equations untrue.
a. sin x = 1 --> arc x = pi/2
b. sin x = - 1 --> arc x = (3pi)/2
Answers for (0, 2pi)
pi/2, (3pi)/2π2,3π2
Check
arc x = pi/2 --> arcsin (1) = arcsin (1/1)
arc x = (3pi)/2 --> arcsin (-1) = arcsin (1/-1)