How do you find the standard form given 9x2+4y236x+24y+36=0?

1 Answer
Feb 15, 2017

The answer is (x2)24+(y+3)29=1

Explanation:

Let's do some rearrangement by completing the squares

9x2+4y236x+24y+36=0

9x236x+4y2+24y=36

9(x24x)+4(y2+6y)=36

9(x24x+4)+4(y2+6y+9)=36+36+36

9(x2)2+4(y+3)2=36

(x2)24+(y+3)29=1

This is the equation of an ellipse.

graph{9x^2-36x+4y^2+24y+36=0 [-11.41, 11.09, -11.1, 0.15]}