How do you find the sum of a finite geometric sequence from n = 1 to n = 8, using the expression −2(3)^n − 1?

1 Answer
Dec 19, 2016

I could just use the formula, plug in the values and get the answer. Not going to do that!

The sum is " " - 19688

Explanation:

So that we can link this to the generic formula bit let the geometric ratio of 3 be r

Then we have:
sum_(i=1->n) [-2r^i-1]

sum_(i=1->n)-2r^i-sum_(i=1->n)1

but sum_(i=1->n)1 = n giving

sum_(i=1->n)[-2r^i] -n

-{ 2sum_(i=1->n)[r^i] +n }............ Expression 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Set " "t=sum_(i=1->n)[r^i]

" "t=r^1+r^2+r^3+...+r^n

" "rt=r^2+r^3+...+r^n+r^(n+1)

rt-t=r^(n+1)-r

t=(r(r^n-1))/(r-1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thus by substitution in Expression(1) we have

-{ 2sum_(i=1->n)[r^i] +n }" "-> -{color(white)(2/2) 2t +n }

(-1)xx{2xx(3(3^8-1))/(3-1)+8}

(-1)xx{cancel(2)^1xx(3(6560))/(cancel(2)^1)+8}

= - 19688
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check:
Tony B