How do you find the sum of the first 40 terms of the geometric sequence 2, 8, 32, 128?

1 Answer
May 2, 2016

The questions asked "how do you find.." In other words: it is not asking for the actual value!
=>s=(2(4^40-1))/(4-1)

Explanation:

I spot that:
2xx4=8
8xx4=32
32xx4=128

Also that
2xx4^0=2
2xx4^1=8
2xx4^2=32
2xx4^3=128

So this sequence is:" "2xx4^(n-1)
'~~~~~~~~~~~~~~~~~~~~~~~~~~
Also
1/2xx4^1=2
1/2xx4^2=8
1/2xx4^3=32
1/2xx4^4=128

So this sequence is: " "1/2xx4^n
'~~~~~~~~~~~~~~~~~~~~~~~~
=>1/2xxn^4=2xx4^(n-1)
Multiply bot sides by 2
=>2/2xxn^4=4xxn^3
=>n^4=n^4->" both are correct forms of the same thing!"
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Solving the question")

color(brown)("Considering a general case")

Let the sum of a sequence be s
Let the sum be:" "s=color(magenta)(ar^1)+ar^2+ar^3+...+ar^n

so " "sr= " "ar^2+ar^3+...+ar^ncolor(blue)(+ar^(n+1))

color(white)(.)

Thus" "sr -s= color(blue)(ar^(n+1))color(magenta)(-ar^1)

s(r-1)=ar(r^n-1)

s=(ar(r^n-1))/(r-1)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Let
a=1/2
r=4
n=40

=>s=(2(4^40-1))/(4-1)