How do you find the sum of the first six terms of the geometric sequence 1, 1.5, 2, 2.25, ...?
1 Answer
This is not a geometric sequence. The term
Without the
Explanation:
Discarding the errant term
The general formula for a term of a geometric sequence is:
a_n = a r^(n-1)
where
For our sequence
Then:
(r-1) sum_(n=1)^N a_n
=(r-1) sum_(n=1)^N a r^(n-1)
=r sum_(n=1)^N a r^(n-1) - sum_(n=1)^N a r^(n-1)
=sum_(n=2)^(N+1) a r^(n-1) - sum_(n=1)^N a r^(n-1)
= a r^N + color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - a - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1))))
= a(r^N-1)
So:
sum_(n=1)^N a_n = (a(r^N-1))/(r-1)
So for our sequence:
sum_(n=1)^6 a_n = (1(1.5^6-1))/(1.5-1)
=2((3/2)^6-1)
=2(729/64-1)
=(729-64)/32
=665/32
=20.78125