How do you find the sum of the geometric series 7+21+63+... to 10 terms?

1 Answer
Dec 8, 2016

206668

Explanation:

The general term of a geometric series is given by the formula:

a_n = a*r^(n-1)

where a is the initial term and r the common ratio.

In our example, a = 7 and r = 3.

Looking at the sum to N terms and multiplying by (r-1) we have:

(r-1) sum_(n=1)^N ar^(n-1) = r sum_(n=1)^N ar^(n-1) - sum_(n=1)^N ar^(n-1)

color(white)((r-1) sum_(n=1)^N ar^(n-1)) = sum_(n=2)^(N+1) ar^(n-1) - sum_(n=1)^N ar^(n-1)

color(white)((r-1) sum_(n=1)^N ar^(n-1)) = color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) + ar^N - a - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1))))

color(white)((r-1) sum_(n=1)^N ar^(n-1)) = a(r^N - 1)

Dividing both ends by (r-1) we find:

sum_(n=1)^N ar^(n-1) = (a(r^N - 1))/(r-1)

In our example, we want the sum to 10 terms, so put a=7, r=3 and N=10 to find:

sum_(n=1)^N ar^(n-1) = (a(r^N - 1))/(r-1)

color(white)(sum_(n=1)^N ar^(n-1))= (7(3^10 - 1))/(3-1) = (7*(59049 - 1))/2 = (7*59048)/2 = 206668