How do you find the sum of the geometric series #7+21+63+...# to 10 terms?

1 Answer
Dec 8, 2016

#206668#

Explanation:

The general term of a geometric series is given by the formula:

#a_n = a*r^(n-1)#

where #a# is the initial term and #r# the common ratio.

In our example, #a = 7# and #r = 3#.

Looking at the sum to #N# terms and multiplying by #(r-1)# we have:

#(r-1) sum_(n=1)^N ar^(n-1) = r sum_(n=1)^N ar^(n-1) - sum_(n=1)^N ar^(n-1)#

#color(white)((r-1) sum_(n=1)^N ar^(n-1)) = sum_(n=2)^(N+1) ar^(n-1) - sum_(n=1)^N ar^(n-1)#

#color(white)((r-1) sum_(n=1)^N ar^(n-1)) = color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) + ar^N - a - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1))))#

#color(white)((r-1) sum_(n=1)^N ar^(n-1)) = a(r^N - 1)#

Dividing both ends by #(r-1)# we find:

#sum_(n=1)^N ar^(n-1) = (a(r^N - 1))/(r-1)#

In our example, we want the sum to #10# terms, so put #a=7#, #r=3# and #N=10# to find:

#sum_(n=1)^N ar^(n-1) = (a(r^N - 1))/(r-1)#

#color(white)(sum_(n=1)^N ar^(n-1))= (7(3^10 - 1))/(3-1) = (7*(59049 - 1))/2 = (7*59048)/2 = 206668#