How do you find the sum of the geometric series Sigma 2(-3)^(n-1) n=1 to 6?

1 Answer
Feb 6, 2017

= - 364

Explanation:

The series is: S = Sigma_(n = 1)^(6) 2(-3)^(n-1) = 2 Sigma_(n = 1)^(6) (-3)^(n-1)

= 2( (-3)^0 + (-3)^1 + ....)

Which can be written as:

S = 2( 1 + r + .... + r^5) , with r = -3

implies r S = 2( r + r^2 + .... + r^6)

implies rS - S = (r-1) S = 2( r^6 -1)

implies S = 2( r^6 -1)/(r-1)

= 2( (-3)^6 -1)/((-3)-1) = - 364