y={x^3}/{6}+1/{2x} => {dy}/{dx}=1/2(x^2-1/x^2)y=x36+12x⇒dydx=12(x2−1x2)
Let us find the arc length element dsds.
ds=sqrt{1+(\frac{dy}{dx})^2}dx=sqrt{1+1/4(x^4-2+1/x^4)}dxds=√1+(dydx)2dx=√1+14(x4−2+1x4)dx
=sqrt{1/4(x^4+2+1/x^4)}dx=sqrt{1/2^2(x^2+1/x^2)^2}dx=√14(x4+2+1x4)dx=√122(x2+1x2)2dx
=1/2(x^2+1/x^2)dx=12(x2+1x2)dx
The surface area AA can be found by
A=2pi int_{1/2}^1(x^3/6+1/{2x})cdot 1/2(x^2+1/x^2)dxA=2π∫112(x36+12x)⋅12(x2+1x2)dx
=pi/6 int_{1/2}^1(x^5+4x+3x^{-3})dx=π6∫112(x5+4x+3x−3)dx
=pi/6[x^6/6+2x^2-3/2x^{-2}]_{1/2}^1=π6[x66+2x2−32x−2]112
=pi/36[x^6+12x^2-9x^{-2}]_{1/2}^1 =π36[x6+12x2−9x−2]112
=pi/36[1+12-9-(1/64+3-36)]={263pi}/{256}=π36[1+12−9−(164+3−36)]=263π256
I hope that this was helpful.