We have:
#x=cos(y/4)# Let's let #f(x)=y#.
#=>x=cos(f(x)/4)# Apply derivative on both sides.
#=>d/dx(x)=d/dx(cos(f(x)/4))#
Power rule:
#d/dx(x^n)=nx^(n-1)# where #n# is a constant.
Chain rule:
#d/dx(f(g(x)))=f'(g(x))*g'(x)#
#d/dx(cos(x))=-sin(x)#
#=>1*x^(1-1)=-sin(f(x)/4)*d/dx(f(x)/4)#
#=>x^(0)=-sin(f(x)/4)*1/4*d/dx(f(x))#
#=>4=-sin(f(x)/4)*f'(x)#
#=>4/-sin(f(x)/4)=f'(x)# Remember that #f(x)=y# and #f'(x)=dy/dx#
#=>4/-sin(y/4)=dy/dx#
When #y=pi...#
#=>4/-sin(pi/4)=dy/dx#
#=>4/(-sqrt2/2)=dy/dx#
#=>4*-2/sqrt2=dy/dx#
#=>-8/sqrt2=dy/dx#
#=>-4sqrt2=dy/dx#
That is the answer!