We have:
f(x)=x^2-2/x We can rewrite this as:
f(x)=x^2-2x^-1 We use the power rule:
d/dx[x^n]=nx^(n-1) if n is a constant.
f'(x)=d/dx[x^2]-d/dx[2x^-1]
=>f'(x)=d/dx[x^2]-2*d/dx[x^-1]
=>f'(x)=2*x^(2-1)-2*-1*x^(-1-1)
=>f'(x)=2x-2*-x^(-2)
=>f'(x)=2x+2x^(-2) Repeat the process.
=>f''(x)=d/dx[2x]+d/dx[2x^(-2)]
=>f''(x)=2*1*x^(1-1)+2*-2*x^-3
=>f''(x)=2-4x^-3 Again!
=>f'''(x)=d/dx[2]-d/dx[4x^-3]
=>f'''(x)=0-4*-3*x^(-3-1)
=>f'''(x)=0+12*x^(-4)
=>f'''(x)=12*1/x^(4)
=>f'''(x)=12/x^(4)